SHK ${ }^{\circ} \mid$ MOST EFFICIENT
 PPR Pipes \& Fittings PIPING SYSTEM

Shreeharikrishna

COMPANY PROFILE

This is an era of transforming our utilization by using the most efficient products. So, with an aim of providing more sustainability in the field of pipes and fittings which plays a very vital role in the quality \& safety purpose, SHK POLYMER INDUSTRIES, a trustable brand and a leading Manufacturer of PPR-C Pipes \& Fittings and HDPE Pipes \& Fittings, are here to provide you the best manufactured pipes using the Raw Material procured from the most reliable sources in the world.

SHK Polymers Industries is an ISO 9001-2008 certified company having an experience of more than 40 years. We provide a wide range of PPR-C pipes in terms of Size (16 mm to 400 mm) and in terms of Pressure (PN 6 to PN 20) as per IS- 15801:2008 and all the Fittings are manufactured as per DIN 15962. SHK Polymers Industries has a phenomenal Manufacturing Facility for PPR-C Pipes \& Fittings which are currently the best replacement of any kind of pipes for Hot/Cold Water Supply, Compressed Air, Chemical Supply \& Clean Water Supply.

SHK Polymers Industries are also into the manufacturing of HDPE Pipes which are quite in demand for Water Supply, Effluent Supply, Drainage applications, Chemicals Supply \& Casing over Electrical Cables. SHK HDPE Pipes are according to the standards of IS 4984 sizing from 20 mm to 450 mm in all the grades and Pressure Ratings mentioned in Indian

We have with us well developed infrastructure facilities that include advanced technology based machinery and a Specialized Research \& Development Unit. We have Multiple Extrusion and Injection Moulding Units for PPR-C and HDPE Pipes \& Fittings. This helps us to achieve columinous and qualitative production. Our plant is equipped with the most sophisticated \& advance machineries to manufacture the products confirming to the standards laid down by Indian and International standard requirements and well equipped with in-house Testing \& Quality Assurance Facilities.

SHK PPR-C PIPES

SHK AQua

Triple Layer PPR-C Pipes \& Fittings
Upper Layer - UV Stabilized

Anti-microbial PPR-C Inner Layer
Anti-Microbial Layer Prevents the growth of Bacteria/Algae/Microbes etc inside the pipe which makes suitable for the Usage of any Clean Water or Liquid Food Supply Application.

Properties

UV Stabilized PPR-C Top layer:

1. UV Stabilizers contains various chemical properties, which gives the protection against UV light by various chemical mechanisms.
2. Colors like Black, Green already have good resistance to UV rays, but addition of UV stabilizers further enhance the light and
3. thermal stability of product.
4. UV stabilizers impart long term durability and enhance life of the product.

SHK Thermo
 Thermal PPR-C Pipes \& Fittings

Middle Layer - Glass Fibre reinforced PPR-C

Inner Layer Anti Microbial PPR-C

- Very Low Frictional Factor (1.5 Ft / 100 Ft)
- No Electrical Conductivity
- Anti-Corrosive
- Good Chemical Resistance
- Negligible Heat Loss
- Low Laying Time
- Recyclable Material
- Hot/Cold Water Supply
- Chemical Plants
- Cooling Towers \& Condensor Lines
- Chilled Water Supply
- Pharmaceutical Industries (USFDA Approved)
- Effluent/ Water/Sewage Treatment Plants
- RO Drinking Water Plant
- Solar Water Heater
- Fire Application

Available Colors

SHK PNEUMATIC PPR-C PIPES \& FITTINGS

SHK Flame Retardant Pipes

The Outer-most Layer of PPR-C pipes is added with Flame Retardant Additives like UL94 to get protection against the fire and helps to stop the flame within some seconds.

UL 94 FLAME RETARDANT CHARACTERISTIC

\(\left.$$
\begin{array}{cc|}\hline \text { TEST CRITERIA } & \begin{array}{c}\text { UL94 } \\
\text { (TESTING AS PER } \\
\text { IEC 60707) }\end{array} \\
\hline \begin{array}{c}\text { Burning time of each individual test } \\
\text { specimen (} s \text {) (after first and second flame applications) }\end{array}
$$ \& \leq 30

\hline Total burning time (s) (10 flame applications) \& \leq 250

\hline Burning and afterglow times after second flame

application (s)\end{array}\right]\)| Yes |
| :---: |

Application

- Compressed Air • Instrument Air
- Vacuum Air
- Nitrogen Air

Anti-Microbial
(Friction Factor- $1.5 \mathrm{ft} / 100 \mathrm{ft}$)
Middle Layer - Glass Fibre reinforcement

Upper Layer UV Stabilized PPR-C

$$
\text { Imbill actur } 1.0 \text { 1/ } 100 \text { tit }
$$

SHK Pneumato

Pneumatic PPR-C Pipes \& Fittings

Available Colors

\square

MOST ENERGY SAVING PIPES FOR ALL AIR APPLICATIONS

STANDARD SIZES OF PPR-C WITH WALL THICKNESS

SHK PPR-C Pipes are ISI approved following the IS: 15801:2008. Below is the thickness requirements as per standards of Sizes and Pressure Ratings.

		SIZE	SDR11/PN10			SDR7.4/PN16			SDR6/PN20		
DIAMETER	SIZING	ACCORDING TO INCH	THICKNESS	INNER DIAMETER	Kg/Meter	THICKNESS	INNER DIAMETER	KG/Meter	THICKNESS	INNER DIAMETER	KG/Meter
20	15 MM	1/2"	1.9	16.2	0.107	2.8	14.4	0.148	3.4	13.2	0.172
25	20 MM	3/4"	2.3	20.4	0.164	3.5	18	0.230	4.2	16.6	0.266
32	25 MM	$1{ }^{\prime \prime}$	2.9	26.2	0.261	4.4	23.2	0.370	5.4	21.2	0.434
40	32 MM	$11 / 4 "$	3.7	32.6	0.412	5.5	29	0.575	6.7	26.6	0.671
50	40 MM	1 1/2"	4.6	40.8	0.638	6.9	36.2	0.896	8.3	33.4	1.040
63	50 MM	$2 "$	5.8	51.4	1.010	8.6	45.8	1.410	10.5	42	1.650
75	65 MM	2 1/2"	6.8	61.4	1.410	10.3	54.4	2.010	12.5	50	2.340
90	80 MM	$3 "$	8.2	73.6	2.030	12.3	65.4	2.870	15	60	3.360
110	100 MM	$4 "$	10	90	3.010	15.1	79.8	4.300	18.3	73.4	5.010
160	150 MM	$6 "$	14.6	130.8	6.380	21.9	116.2	9.040	26.6	106.8	10.600
200	200 MM	8"	18.2	163.6	9.920	27.4	145.2	14.180	34	132	17.150

OUTER DIAMETER	MS PIPE SIZING	SIZE ACCORDING TO INCHES	SDR17/PN6			SDR13.6/PN8			SDR11/PN10		
200	200 MM	8"	11.4	177.6	7.05	14.7	170.6	8.27			
250	250 MM	10	14.2	221.6	10.940	18.4	213.2	13.300	22.7	204.6	15.528
315	300 MM	12 "	17.9	279.2	17.572	23.3	268.4	21.190	28.6	257.8	24.683
400	350 MM	16"	23.5	353	28.060						

Note : SDR Means Standard Dimensional Ratio which is THE RATIO OF OUTER DIAMETER WITH THE THICKNESS OF THE PIPES.

TECHNICAL PROPERTIES

Thermal Properties

Properties	Test Method	Unit	Value
Thermal Conductivity at 23 C	DIN 52612	$\mathrm{~W} / \mathrm{m}^{0 \mathrm{~K}}$	0.23
Specific heat at 23 C	Calorimeter	$\mathrm{Kj} / \mathrm{kg}^{0 \mathrm{~K}}$	1.73
Coefficient of linear thermal expansion	DIN 53752	$\mathrm{~K}^{-1}$	1.5×10^{-4}
Under weight deformation temperature $1.8 \mathrm{~N} / \mathrm{mm} 2$	ISO 306	${ }^{\circ} \mathrm{C}$	44
$0.45 \mathrm{~N} / \mathrm{mm} 2$	ISO 3146	${ }^{\circ} \mathrm{C}$	42
VICAT softening point	0.095	${ }^{\circ} \mathrm{C}$	130

Mechanical Properties

Physical Properties

Properties	Test Method	Unit	Value
Density	ASTM D792	G/CM ${ }^{3}$	0.91
Melt Flow Index	-	-	-
MFi $190 \mathrm{C} / 5 \mathrm{~kg}$	ASTM D1238	G/10 MINUTES	0.4
MFi $230 \mathrm{C} / 2.16 \mathrm{~kg}$	ISO R 1133	G/10 MINUTES	0.2
MFi $230 \mathrm{C} / 5 \mathrm{~kg}$	DIN 53735	G/10 MINUTES	0.6

Outside Diameter of Pipe (mm)	$\mathbf{2 0}$	$\mathbf{y y}$	Temperature In Degree - Support in Cms				
20	80	75	$\mathbf{4 0}$	50	60	70	
25	85	85	85	70	65	60	
32	100	95	95	90	75	70	
40	110	110	105	100	95	75	
50	125	120	115	110	105	95	
63	140	135	130	125	120	105	
75	155	150	145	135	130	115	
90	170	165	160	155	150	145	
110	190	185	180	175	160	165	
160	200	200	200	195	180	175	
200	225	225	225	225	210	200	
250	245	245	245	245	235	235	
315	275	275	275	275	265	250	
400	295	295	295	295	280	265	

"SHK" PPR-C PIPE SELECTION CHART (CFM Vs. PIPE DIA Vs. LENGTH)

	LENGTH									
FLOW RATE	164 FT	328 FT	429 FT	984 FT	1640 FT	2460 FT	3280 FT	4265 FT	5249 FT	6562 FT
CFM	50 Mtr .	100 Mtr.	150 Mtr .	300 Mtr .	500 Mtr.	750 Mtr .	1000 Mtr.	1300 Mtr .	1600 Mtr .	2000 Mtr.
8	1/2"	1/2"	1/2"	1/2"	3/4"	$3 / 4 "$	$3 / 4 "$	$3 / 4 "$	$3 / 4 "$	$1{ }^{1}$
18	$3 / 4 "$	$3 / 4 "$	$3 / 4 "$	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	11/4"	11/4"	11/4"	11/4"	11/4"
29	$3 / 4 "$	$3 / 4 "$	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	11/4"	11/4"	11/4"	11/2"	11/2"
49	$1{ }^{\prime \prime}$	11/4"	11/4"	11/4"	11/4"	11/2"	11/2"	11/2"	$2 "$	$2{ }^{\prime \prime}$
59	11/4"	11/4"	11/4"	11/2"	11/2"	11/2"	11/2"	11/2"	2"	$2 "$
88	11/4"	11/2"	11/2"	11/2"	$2 "$	$2 "$	$2 "$	$2 "$	21/2"	21/2"
147	$2 "$	$2 "$	2 "	$2 "$	21/2"	21/2"	21/2"	21/2"	21/2"	21/2"
206	2^{\prime}	$2 "$	$2 "$	$2 "$	21/2"	21/2"	21/2"	$3 "$	$3 "$	$3{ }^{\prime \prime}$
294	21/2"	21/2"	21/2"	21/2"	21/2"	$3 "$	$3 "$	$3 "$	$3 "$	$3 "$
441	21/2"	21/2"	21/2"	$3 "$	$3 "$	$3 "$	$3 "$	$4 "$	$4 "$	$4 "$
589	21/2"	21/2"	$3 "$	$3 "$	$3 "$	$4 "$	$4 "$	$4 "$	$4 "$	$4 "$
883	$3 "$	$3 "$	$3 "$	$4 "$	$4 "$	$4 "$	$4 "$	$6 "$	$6 "$	$6 "$
1030	$3 "$	$3 "$	$3 "$	$4 "$	$4 "$	$4 "$	$4 "$	$6 "$	$6 "$	$6 "$
1766	$4 "$	$4 "$	$4 "$	$4 "$	$6 "$	$6 "$	$6 "$	$6 "$	$6 "$	$6 "$

ALLOWABLE WORKING PRESSURE FOR PPR

As per DIN 8077:1999-07 allowable working pressure for PPR pipes with SF = 1.25

THERMAL EXPANSION

A pipe line which is subjected to a variation of temperatures changes its length if it is free to do so. These changes in length are proportional to the unit linear coefficient of thermal expansion.

Pipe in Length (Mtr)	Temperature Difference (-T) OC							
0.1	0.15	0.30	0.45	0.60	0.75	0.90	1.05	1.20
0.2	0.30	0.60	0.90	1.20	1.50	1.80	2.10	2.40
0.3	0.45	0.90	1.35	4.80	2.25	2.70	3.15	3.60
0.4	0.60	1.20	1.80	2.25	3.00	3.60	4.20	4.80
0.5	0.75	1.50	2.25	3.00	3.75	4.50	5.25	6.00
0.6	0.90	1.80	2.70	3.60	4.50	5.40	6.30	7.20
0.7	1.05	2.10	3.15	4.20	5.25	6.30	7.35	8.40
0.8	1.20	2.40	3.60	4.80	6.00	7.20	8.40	9.60
0.9	1.35	2.70	4.05	5.40	6.75	8.10	9.45	10.80
1.0	1.50	3.00	4.50	6.00	7.50	9.00	10.50	12.00
2.0	3.00	6.00	9.00	12.00	15.00	18.00	21.00	24.00
3.0	4.50	9.00	13.50	18.00	22.50	27.00	31.50	36.00
4.0	6.00	12.00	18.00	24.00	30.00	36.00	42.00	48.00
5.0	7.50	15.00	22.50	30.00	37.50	45.00	52.50	60.00
6.0	9.00	18.00	27.00	36.00	45.00	54.00	63.00	72.00
7.0	10.50	21.00	31.50	42.00	52.50	63.00	73.50	84.00
8.0	12.00	24.00	36.00	48.00	60.00	72.00	84.00	96.00
9.0	13.50	27.00	40.50	54.00	67.50	81.00	94.50	108.00
10.0	15.00	30.00	45.00	60.00	75.00	90.00	105.00	120.00

TECHNICAL \& COMMERCIAL COMPARISON

Properties	MS Pipes	CPVC Pipes	PPR Pipes
Service Life	3-5 years	15-20 years	50 years
Food Grade	Poor due to corrosion issues	The solution used for jointing the pipes might contaminate the water. Non-Hygienic in Nature	Hygienic, CFTRI approved- can supply clean water and liquid food
Leakage	High chance	High Chance due to Solution Based Jointing	Negligible chance due to Socket Fusion Jointing
Heat Loss	High	Negligible	Negligible
Thermal Conductivity	Very High ($45 \mathrm{~W} / \mathrm{mK}$)	Low (0.3 W/mk)	Low (0.23 W/mk)
Insulation Requirement in Chilled Water Supply	More Insulation thickness required due to high thermal conductivity	Pipes not recommended for Chilled Water Supply	$1 / 2$ or $1 / 3$ rd insulation thickness than MS as thermal conductivity is quite low
Maintenance Cost	High after 3-4 years	High after 5-6 years	Negligible upto 15-20 years
Corrosion Resistance	Nil	Excellent	Excellent
Friction	Very High	Low, approx $4 \mathrm{ft} / 100 \mathrm{ft}$	Negligible due to smooth layer, approx $1.5 \mathrm{ft} / 100 \mathrm{ft}$
Weight	Very heavy	Very light due to which transportation cost decreases by 3 times	Very light due to which transportation cost decreases by 3 times
Painting Cost	Additionally high for the painting the pipes accoridng to standards	None	None
Young's Modulus	NA	Approx 3275 Mpa which makes the pipe rigid and brittle	Aprrox 850 Mpa which make the Pipes tough and ductile
Temperature Resistance	Applicable for Higher Temperatures as well	10 Degree Celcius to 80 Degree Celcius (Adhesives used for Joints can be used only upto 60 Degree Celsius)	(-8) to 95 Degree Celsius
CAPEX Costing	30-35\% Higher than PPR-C	45-50\% Higher Than PPR-C	Very Low CAPEX Costing
OPEX Costing	55-60\% Higher than PPR-C because of High Maintenance	20-25\% Higher than PPR-C	Very Low OPEX Costing because of Negligible Maintenance
Installation Time	Very High because of Welding Joints and more Man-Power Required	Negligible as Solution based joints	Low because of Socket Fusion Jointing

SHK PPR-C Triple Layer Pipes \& Fittings	
	Size
PN 06 Pipes	200 mm to 400 mm
PN 10 Pipes	32 mm to 315 mm
PN 20 Pipes	20 mm to 315 mm

SHK HDPE Pipes \& Fittings (PE100, PE80 \& PE63)		
Type	Size	
PN 2.5 to PN 06 Pipes	40 mm to 450	T
PN 08 to PN 16 Pipes	20 mm to 315	
	SHK Pneumato PPR-C Pipes \& Fittings	
	Type	Size
	PN 06 Pipes	200 mm to 400 mm
	PN 10 Pipes	50 mm to 315 mm
	PN 16 Pipes	20 mm to 315 mm
	PN 20 Pipes	20 mm to 315 mm

SHK EF Electrofusion HDPE Fittings
Size
63 mm to 315 mm

Socket

End Cap

PPR-Flange

Long Bend

FT Saddle

F T Socket

F T Elbow

Gate Valve

Cross Tee

(Size : 20 mm to 400 mm)

Socket

End Cap

Flange

F T Socket

M T Tee

Elbow 90 degree

Flange Core/Stubend

M T Socket

F T Elbow

Long Bend

Elbow 45 degree

Reducer

F T Union

M T Elbow

F T Tee

Cutting

- Cut the pipe at right angle to its axis using burr-free cutter
- Ensure that pipe is free from burrs or cutting chips
- Clean the pipe \& fitting perfectly before welding.
- Mark welding depth at the end of pipe

Heating

- Mount the suitable Dies (Socket and Pucnh) on heating element of welding machine according to the diameter of pipe and fitting to be welded
- Connect the welding machine to 220 Volts A.C. power supply
- Select 260 C temperature on the welding machine hermostat
- Wait for reaching the required working temperature
- Insert the pipe and the fitting in the Dies (i.e. Socket and Punch respectively) by exerting light pressure
- Heat both pipe \& fitting as per the size and time given in the following table

Welding

- After heating, quickly insert pipe into the fitting by exerting light pressure

- Any misalignment should be corrected immediately after insertion to avoid any stress in the weld. This type of connection ensures perfect sealing even under the hard working conditions.

Note :

1. Avoid air draughts during welding to avoid stress in the welds.
2. During site welding, keep the welding set at a right angle to the pipe and fitting in order to avoid partial welding.

Pipe Dia. $(\mathbf{m m})$	Welding Depth $(\mathbf{m m})$	Heating Time (Sec)	Welding Time (Sec)	Cooling Time (Min)
20	14.50	6	4	2
25	16.00	7	4	2
32	18.00	8	6	4
40	20.50	12	6	4
50	23.50	18	6	4
63	27.50	24	8	6
75	30.00	30	8	6
90	33.00	40	8	6
110	37.00	52	10	8

QUALITY CERTIFICATES

$\underset{\text { APPRovED PRoоист }}{\text { DWRAS }}$

1)	Ahmedabad	14)	Pune	27)	Bhopal	40)	Kolkata
2)	Baroda	15)	Mumbai	28)	Belgaum	41)	Siliguri
3)	Ankleshwar	16)	Boisar	29)	Bangalore	42)	Guwahati
4)	Dahej	17)	Vasai	30)	Mangalore	43)	Jammu
5)	Panoli	18)	Solapur	31)	Mysore	44)	Kashmir
6)	Surat	19)	Ahmednagar	32)	Chennai	45)	Leh
7)	Vapi	20)	Bhuj	33)	Coimbatore	46)	Delhi
8)	Diu and Daman	21)	Selvasa	34)	Dindigul	47)	Patna
9)	Morbi	22)	Icchhalkaranji	35)	Madurai	48)	Vizag
10)	Rajkot	23)	Dhule	36)	Cochi	49)	Chandigarh
11)	Gandhidham	24)	Nagpur	37)	Goa		
12)	Aurangabad	25)	Nashik	38)	Hyderabad		
13)	Kolhapur	26)	Indore	39)	Secunderabad		

International

1) Sri Lanka
2) Bangladesh
3) Bhutan
4) Dubai
5) Qatar
6) Oman
7) Ethiopia

OUR CLIENTS

Sector : Ceramic Industries

 Application
 Multiple
 Velsäa

Application Multiple

Application Multiple

Sector : Plastic Industries

Application
Multiple

Application Cooling Tower

Application
Chilled Water Supply

Application Chilled Water Supply

Sector: Government

Application
Multiple Applications

Application Multiple

Sector : Food \& Beverages

Application Multiple Applications

Sector: Institutes

Application
Water Supply

Application Chilled Water Supply

Application Chilled Water Supply

Sector : Chemical Industries

Application Multiple

Application Multiple

Application Multiple

Application Raw Water and Process Water

Application Chemical Supply and Raw Water

Sector : Foundry

OUR CLIENTS

Sector : Pharmaceutical
aCULIFE

Application Mulitple
Zyclus
Cadila

Application
Mulitple

Application Mulitple

Application
Cooling Tower

Application Mulitple

Application Chilled Water Supply

Application
Cooling Tower

Application
Multiple

Sector : Textile

Application Multiple

Application Compressed Air Supply

Application Compressed Air Supply

Application Mulitple

Sector : Other Clients

Ashok Leyland	KRLPA-TARU PCWER TRANSMISSION LMETED		L006111		
Application Compressed Air Supply	Application Compressed Air Supply	Application Chilled Water Supply	Application Multiple	Application Compressed Air Supply	Application Chilled Water Supply
HITACHI Air conditioning solutions Johnson Controls	THERMAX	TVS \sim			HITACHI Astemo
Application Chilled Water SupplyV	Application Multiple	Application Multiple	Application Chilled Water Supply	Application Chilled Water Supply	Application Multiple

Application
Chilled Water Supply

Shreeharikrishna Group
 SHK POLYMERS INDUSTRIES

Reg. Office
"Harikrishna House", Plot No: 139/1, Phase-I, Opp. Patel Alloy Steel Ltd. GIDC, Vatva, Ahmedabad - 382445, Gujarat, INDIA
© +919724323586
6 +91-79-2583 1110-41-42, 25835359
छ +91-79-2589 2630
凶info@shreeharikrishna.net
© www.shreeharikrishna.net

